Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(3): pgae115, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38550277

RESUMO

Transfer RNA (tRNA) modification is essential for proper protein translation, as these modifications play important roles in several biological functions and disease pathophysiologies. AlkB homolog 8 (ALKBH8) is one of the nine mammalian ALKBH family molecules known to regulate selenoprotein translation through the modification of the wobble uridine (U34) in tRNA; however, its specific biological roles remain unclear. In this study, we investigated the role of ALKBH8 using Alkbh8-knockout (Albkh8-/-) mice, which were observed to have reduced 5-methoxycarbonylmethyluridine (mcm5U) and (S)-5-methoxycarbonylhydroxymethyluridine levels; notably, the mcm5U level was partially compensated only in the brain. The results of the novel object recognition test showed reduction in time to explore a novel object in Albkh8-/- mice; increased latency to fall in the rotarod performance test and latency to the immobility period in the forced swim test were also observed. These abnormal behaviors indicate dysfunction of the central nervous system. Furthermore, we observed reduced brain weight and ischemic pathological changes in the cerebral cortex and hippocampus in the form of weak eosin staining in the fiber tracts adjacent to the hippocampal cornu ammonis 1 region and an increase in pyramidal cells in the temporal lobe. Concordantly, we identified the differential expression of oxidative stress-related proteins and metabolites in the cerebral cortex and hippocampus using omics analyses. Finally, neurons and glial cells derived from Albkh8-/- mice show reduced mitochondrial membrane potential. Collectively, these findings indicate that ALKBH8 maintains neural function through an oxidative stress-regulatory mechanism.

2.
Neurochem Int ; 174: 105682, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301899

RESUMO

The serotonergic (5-HTergic) system is closely involved in the pathophysiology of mood and anxiety disorders and the responsibility of this system may differ for each symptom. In this study, we examined the relationship between the dysfunction of the 5-HTergic system and abnormal behaviors in the social defeat stress model, an animal model of mood and anxiety disorders and in mice with knockdown of Slc6a4, the gene encoding SERT. Monoamine content, serotonin (5-HT) release, 5-HT uptake, 5-HT transporter (SERT) protein levels, and behaviors were investigated in mice subjected to chronic social defeat stress and in mice with knockdown of Slc6a4, in 5-HTergic neurons projecting to the prefrontal cortex (PFC). Furthermore, DNA methylation of Slc6a4 was examined in mice subjected to chronic social defeat stress. Increased turnover, increased extracellular basal levels, decreased release and decreased uptake of 5-HT, and decreased SERT protein levels were observed in the PFC of the stressed mice. The decreased 5-HT uptake correlated with anxiety-like behavior characterized by decreased time spent in the open arms of the elevated plus maze. DNA methylation was increased in the CpG island of Slc6a4 in 5-HTergic neurons projecting to the PFC of the stressed mice. Similar to the stressed mice, mice with Slc6a4 knockdown in 5-HTergic neurons projecting to the PFC also showed decreased release and uptake of 5-HT in the PFC and increased anxiety-like behavior. Chronic stress may induce anxiety due to dysfunction in the prefrontal 5-HTergic system via decreased SERT expression in the PFC.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina , Serotonina , Camundongos , Animais , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/metabolismo , Regulação para Baixo , Derrota Social , Ansiedade , Córtex Pré-Frontal/metabolismo
3.
J Pharmacol Sci ; 154(3): 139-147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395514

RESUMO

Vasoactive intestinal peptide (VIP) receptor 2 (VIPR2) is a G protein-coupled receptor that binds to Gαs, Gαi, and Gαq proteins to regulate various downstream signaling molecules, such as protein kinase A (PKA), phosphatidylinositol 3-kinase (PI3K), and phospholipase C. In this study, we examined the role of VIPR2 in cell cycle progression. KS-133, a newly developed VIPR2-selective antagonist peptide, attenuated VIP-induced cell proliferation in MCF-7 cells. The percentage of cells in the S-M phase was decreased in MCF-7 cells treated with KS-133. KS-133 in the presence of VIP decreased the phosphorylation of extracellular signal-regulated kinase (ERK), AKT, and glycogen synthase kinase-3ß (GSK3ß), resulting in a decrease in cyclin D1 levels. In MCF-7 cells stably-expressing VIPR2, KS-133 decreased PI3K activity and cAMP levels. Treatment with the ERK-specific kinase (MEK) inhibitor U0126 and the class I PI3K inhibitor ZSTK474 decreased the percentage of cells in the S phase. KS-133 reduced the percentage of cells in the S phase more than treatment with U0126 or ZSTK474 alone and did not affect the effect of the mixture of these inhibitors. Our findings suggest that VIPR2 signaling regulates cyclin D1 levels through the cAMP/PKA/ERK and PI3K/AKT/GSK3ß pathways, and mediates the G1/S transition to control cell proliferation.


Assuntos
Butadienos , Ciclina D1 , Nitrilas , Peptídeos Cíclicos , Proteínas Proto-Oncogênicas c-akt , Humanos , Ciclina D1/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células MCF-7 , Receptores Tipo II de Peptídeo Intestinal Vasoativo , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta , Divisão Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proliferação de Células , Fosfatidilinositol 3-Quinase
4.
Anesth Analg ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377038

RESUMO

BACKGROUND: Ketamine is an intravenous anesthetic that acts as a channel blocker on the N-methyl-d-aspartate (NMDA) receptor, a glutamate receptor subtype. MK-801 is the most potent compound among noncompetitive NMDA receptor antagonists. Ketamine induces loss of the righting reflex (LORR) in rodents, which is one of the indicators of unconsciousness, whereas high doses of MK-801 produce ataxia, but not LORR. In contrast, we previously reported that MK-801 combined with a low dose of the dopamine receptor antagonist haloperidol-induced LORR in mice. To assess a neurophysiologically distinct brain state and demonstrate unconsciousness, electroencephalograms (EEG) need to be examined together with LORR. Therefore, we herein investigated EEG changes after the systemic administration of MK-801 alone or in combination with haloperidol, and compared them with those induced by ketamine, the glutamate release inhibitor riluzole, and the γ-aminobutyric acid type A receptor agonist propofol. METHODS: All drugs were intraperitoneally administered to adult male ddY mice (n = 168). General anesthesia was evaluated based on the righting reflex test. Animals who exhibited no righting for more than 30 seconds were considered to have LORR. In a separate group of mice, EEG of the primary visual cortex was recorded before and after the administration of MK-801 (3.0 mg/kg) alone or in combination with haloperidol (0.2 mg/kg), ketamine (150 mg/kg), riluzole (30 mg/kg), or propofol (240 mg/kg). The waveforms recorded were analyzed using EEG power spectra and spectrograms. RESULTS: The high dose of MK-801 alone did not induce LORR, whereas MK-801 combined with haloperidol produced LORR in a dose-dependent manner. Ketamine, riluzole, and propofol also dose-dependently induced LORR. In the EEG study, MK-801 alone induced a significant increase in δ power, while MK-801 plus haloperidol exerted similar effects on not only δ, but also θ and α power during LORR, suggesting that increases in δ, θ, and α power were necessary for LORR. The results obtained on MK-801 plus haloperidol were similar to those on ketamine in the behavioral and EEG studies, except for an increase in γ power by ketamine during LORR. Propofol significantly increased δ, θ, α, and ß power during LORR. However, the EEG results obtained using riluzole, which produced a unique pattern of lower amplitude activity spanning most frequencies, markedly differed from those with the other drugs. CONCLUSIONS: This study revealed differences in EEG changes induced by various sedatives. The results obtained on MK-801 alone and MK-801 plus haloperidol suggest the importance of dopamine transmission in maintaining the righting reflex.

5.
Mol Psychiatry ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38388704

RESUMO

Chronic social isolation increases the risk of mental health problems, including cognitive impairments and depression. While subanesthetic ketamine is considered effective for cognitive impairments in patients with depression, the neural mechanisms underlying its effects are not well understood. Here we identified unique activation of the anterior insular cortex (aIC) as a characteristic feature in brain-wide regions of mice reared in social isolation and treated with (R)-ketamine, a ketamine enantiomer. Using fiber photometry recording on freely moving mice, we found that social isolation attenuates aIC neuronal activation upon social contact and that (R)-ketamine, but not (S)-ketamine, is able to counteracts this reduction. (R)-ketamine facilitated social cognition in social isolation-reared mice during the social memory test. aIC inactivation offset the effect of (R)-ketamine on social memory. Our results suggest that (R)-ketamine has promising potential as an effective intervention for social cognitive deficits by restoring aIC function.

6.
J Pharmacol Sci ; 154(2): 72-76, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246730

RESUMO

Alternatives to ketamine without psychotomimetic properties for the treatment of depression have attracted much attention. Here, we examined the anti-despair and anti-anhedonia effects of the ketamine metabolites (S)-norketamine ((S)-NK), (R)-NK, (2S,6S)-hydroxynorketamine, and (2R,6R)-hydroxynorketamine in a mouse model of depression induced by social isolation. All ketamine metabolites examined had acute (30 min after administration) anti-despair-like effects in the forced swim test, but only (S)-NK showed a long-lasting (1 week) effect. Additionally, only (S)-NK improved reduced motivation both 30 min and 24 h after injection in the female encounter test. These results suggest that (S)-NK has potent and long-lasting antidepressant-like effects.


Assuntos
Ketamina , Feminino , Animais , Camundongos , Ketamina/farmacologia , Modelos Animais de Doenças , Isolamento Social
7.
Psychopharmacology (Berl) ; 241(4): 805-816, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114603

RESUMO

RATIONALE: Phosphodiesterase 4D negative allosteric modulators (PDE4D NAMs) enhance memory and cognitive function in animal models without emetic-like side effects. However, the relationship between increased cyclic adenosine monophosphate (cAMP) signaling and the effects of PDE4D NAM remains elusive. OBJECTIVE: To investigate the roles of hippocampal cAMP metabolism and synaptic activation in the effects of D159687, a PDE4D NAM, under baseline and learning-stimulated conditions. RESULTS: At 3 mg/kg, D159687 enhanced memory formation and consolidation in contextual fear conditioning; however, neither lower (0.3 mg/kg) nor higher (30 mg/kg) doses induced memory-enhancing effects. A biphasic (bell-shaped) dose-response effect was also observed in a scopolamine-induced model of amnesia in the Y-maze, whereas D159687 dose-dependently caused an emetic-like effect in the xylazine/ketamine anesthesia test. At 3 mg/kg, D159687 increased cAMP levels in the hippocampal CA1 region after conditioning in the fear conditioning test, but not in the home-cage or conditioning cage (i.e., context only). By contrast, 30 mg/kg of D159687 increased hippocampal cAMP levels under all conditions. Although both 3 and 30 mg/kg of D159687 upregulated learning-induced Fos expression in the hippocampal CA1 30 min after conditioning, 3 mg/kg, but not 30 mg/kg, of D159687 induced phosphorylation of synaptic plasticity-related proteins such as cAMP-responsive element-binding protein, synaptosomal-associated protein 25 kDa, and the N-methyl-D-aspartate receptor subunit NR2A. CONCLUSIONS: Our findings suggest that learning-stimulated conditions can alter the effects of a PDE4D NAM on hippocampal cAMP levels and imply that a PDE4D NAM exerts biphasic memory-enhancing effects associated with synaptic plasticity-related signaling activation.


Assuntos
Compostos Benzidrílicos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Compostos de Fenilureia , Inibidores da Fosfodiesterase 4 , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/farmacologia , Eméticos/metabolismo , Eméticos/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Transdução de Sinais , Hipocampo
8.
Front Pediatr ; 11: 1203894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635786

RESUMO

Introduction: Porphyromonas gingivalis (P. gingivalis), a major periodontal pathogen, causes intrauterine infection/inflammation. Offspring exposed to intrauterine infection/inflammation have an increased risk of neurological disorders, regardless of gestational age. However, the relationship between maternal periodontitis and offspring functional/histological changes in the brain has not yet been elucidated. Methods: In this study, we used a gestational mouse model to investigate the effects of maternal odontogenic infection of P. gingivalis on offspring behavior and brain tissue. Results: The step-through passive avoidance test showed that the latency of the acquisition trial was significantly shorter in the P. gingivalis group (p < 0.05), but no difference in spontaneous motor/exploratory parameters by open-field test. P. gingivalis was diffusely distributed throughout the brain, especially in the hippocampus. In the hippocampus and amygdala, the numbers of neuron cells and cyclic adenosine monophosphate response element binding protein-positive cells were significantly reduced (p < 0.05), whereas the number of ionized calcium binding adapter protein 1-positive microglia was significantly increased (p < 0.05). In the hippocampus, the number of glial fibrillary acidic protein-positive astrocytes was also significantly increased (p < 0.05). Discussion: The offspring of P. gingivalis-infected mothers have reduced cognitive function. Neurodegeneration/neuroinflammation in the hippocampus and amygdala may be caused by P. gingivalis infection, which is maternally transmitted. The importance of eliminating maternal P. gingivalis-odontogenic infection before or during gestation in maintenance healthy brain function in offspring should be addressed in near future.

9.
PLoS One ; 18(7): e0286651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405999

RESUMO

We have previously demonstrated that KS-133 is a specific and potent antagonist of vasoactive intestinal peptide receptor 2 (VIPR2). We have also shown that vasoactive intestinal peptide-VIPR2 signaling affects the polarity and activation of tumor-associated macrophages, which is another strategy for cancer immunotherapy apart from the activation of effector T cells. In this study, we aimed to examine whether the selective blockade of VIPR2 by KS-133 changes the polarization of macrophages and induces anti-tumor effects. In the presence of KS-133, genetic markers indicative of tumor-aggressive M1-type macrophages were upregulated, and conversely, those of tumor-supportive M2-type macrophages were downregulated. Daily subcutaneous administration of KS-133 tended to suppress the growth of CT26 tumors (murine colorectal cancer-derived cells) implanted subcutaneously in Balb/c mice. To improve the pharmacological efficacy and reduce the number of doses, we examined a nanoformulation of KS-133 using the US Food and Drug Administration-approved pharmaceutical additive surfactant Cremophor® EL. KS-133 nanoparticles (NPs) were approximately 15 nm in size and stable at 4°C after preparation. Meanwhile, KS-133 was gradually released from the NPs as the temperature was increased. Subcutaneous administration of KS-133 NPs once every 3 days had stronger anti-tumor effects than daily subcutaneous administration of KS-133. Furthermore, KS-133 NPs significantly enhanced the pharmacological efficacy of an immune checkpoint-inhibiting anti-PD-1 antibody. A pharmacokinetic study suggested that the enhancement of anti-tumor activity was associated with improvement of the pharmacokinetic profile of KS-133 upon nanoformulation. Our data have revealed that specific blockade of VIPR2 by KS-133 has therapeutic potential for cancer both alone and in combination with immune checkpoint inhibitors.


Assuntos
Neoplasias , Receptores Tipo II de Peptídeo Intestinal Vasoativo , Animais , Camundongos , Linhagem Celular Tumoral , Imunoterapia , Macrófagos , Microambiente Tumoral
10.
Nihon Yakurigaku Zasshi ; 158(3): 228, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37121705
11.
Neurosci Lett ; 802: 137175, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907265

RESUMO

Pentobarbital-induced anesthesia is believed to be mediated by enhancement of the inhibitory action of γ-aminobutyric acid (GABA)ergic neurons in the central nervous system. However, it is unclear whether all components of anesthesia induced by pentobarbital, such as muscle relaxation, unconsciousness, and immobility in response to noxious stimuli, are mediated only through GABAergic neurons. Thus, we examined whether the indirect GABA and glycine receptor agonists gabaculine and sarcosine, respectively, the neuronal nicotinic acetylcholine receptor antagonist mecamylamine, or the N-methyl-d-aspartate receptor channel blocker MK-801 could enhance pentobarbital-induced components of anesthesia. Muscle relaxation, unconsciousness, and immobility were evaluated by grip strength, the righting reflex, and loss of movement in response to nociceptive tail clamping, respectively, in mice. Pentobarbital reduced grip strength, impaired the righting reflex, and induced immobility in a dose-dependent manner. The change in each behavior induced by pentobarbital was roughly consistent with that in electroencephalographic power. A low dose of gabaculine, which significantly increased endogenous GABA levels in the central nervous system but had no effect on behaviors alone, potentiated muscle relaxation, unconsciousness, and immobility induced by low pentobarbital doses. A low dose of MK-801 augmented only the masked muscle-relaxing effects of pentobarbital among these components. Sarcosine enhanced only pentobarbital-induced immobility. Conversely, mecamylamine had no effect on any behavior. These findings suggest that each component of anesthesia induced by pentobarbital is mediated through GABAergic neurons and that pentobarbital-induced muscle relaxation and immobility may partially be associated with N-methyl-d-aspartate receptor antagonism and glycinergic neuron activation, respectively.


Assuntos
Pentobarbital , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Pentobarbital/farmacologia , Maleato de Dizocilpina/farmacologia , Sarcosina/farmacologia , Mecamilamina , Ácido gama-Aminobutírico , Inconsciência
12.
Nihon Yakurigaku Zasshi ; 158(3): 242-245, 2023 May 01.
Artigo em Japonês | MEDLINE | ID: mdl-36990792

RESUMO

Schizophrenia affects approximately 24 million people worldwide. Existing medications for the treatment of schizophrenia work primarily by improving positive symptoms such as agitation, hallucinations, delusions, and aggression. They possess common mechanism of action (MOA), blocking to neurotransmitter receptors such as dopamine, serotonin, and adrenaline receptors. Although multiple agents are available for the treatment of schizophrenia, the majority do not address negative symptoms or cognitive dysfunction. In other cases, patients have drug-related adverse effects. The vasoactive intestinal peptide receptor 2 (VIPR2, also known as VPAC2 receptor) might be an attractive drug target for the treatment of schizophrenia because both clinical and preclinical studies have demonstrated a strong link between high expression/overactivation of VIPR2 and schizophrenia. Despite these backgrounds, the proof-of-concept of VIPR2 inhibitors has not been examined clinically. A reason might be that VIPR2 belongs to class-B GPCRs, and the discovery of small-molecule drugs against class-B GPCRs is generally difficult. We have developed a bicyclic peptide KS-133, which shows VIPR2 antagonist activity and suppresses cognitive decline in a mouse model relevant to schizophrenia. KS-133 has a different MOA from current therapeutic drugs and exhibits high selectivity for VIPR2 and potent inhibitory activity against a single-target molecule. Therefore, it may contribute to both the development of a novel drug candidate for the treatment of psychiatric disorders such as schizophrenia and acceleration of basic studies on VIPR2.


Assuntos
Receptores Tipo II de Peptídeo Intestinal Vasoativo , Esquizofrenia , Camundongos , Animais , Esquizofrenia/tratamento farmacológico , Peptídeo Intestinal Vasoativo/farmacologia , Peptídeo Intestinal Vasoativo/uso terapêutico
13.
J Nat Med ; 77(3): 604-609, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36854953

RESUMO

Food allergy is recognized as a global medical problem with increasing prevalence in recent years. Currently, the treatment of food allergy mainly involves avoidance of allergens and allergen-specific immunotherapy. Barring the spontaneous resolution of food allergy during the growth process, this disease is difficult to treat fundamentally. In recent years, the use of functional food ingredients derived from natural products has been attracting attention for their prophylactic use in food allergy. Theaflavins, i.e., black tea polyphenols, are potent antioxidants that have inhibitory effects on a variety of diseases. However, little is known about the preventive effect of theaflavins on food allergy. In this study, we designed a mouse model of food allergy and examined the effect of theaflavins using the severity of diarrhea, a symptom of food allergy, as an indicator. The administration of a black tea extract rich in theaflavins or theaflavin 1 (subgroup of theaflavins) to mice reduced the severity of diarrhea when compared with a normal diet. A reduction in malondialdehyde levels, a key marker of lipid peroxidation, was also observed. Overall, these data suggest that theaflavins may potentially inhibit food allergy by alleviating oxidative stress in the colon and can be a potential food material for prevention of food allergy.


Assuntos
Hipersensibilidade Alimentar , Polifenóis , Camundongos , Animais , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Chá , Ovalbumina , Hipersensibilidade Alimentar/tratamento farmacológico
14.
Peptides ; 161: 170940, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36603770

RESUMO

Vasoactive intestinal peptide (VIP) receptor 2 (VIPR2) is a class B G protein-coupled receptor with the neuropeptide VIP as a ligand. Increased VIPR2 mRNA expression and/or VIPR2 gene copy number has been documented in several cancers including breast carcinoma. However, the pathophysiological role of increased VIPR2 in the proliferation of breast cancer cells remains largely unknown. In this study, we found that VIPR2 overexpression in MCF-7 and MDA-MB-231 cells, human breast cancer cell lines, promoted cell proliferation. Increased VIPR2 also exacerbated intraperitoneal proliferation of breast cancer MDA-MB-231 cells in a tumor nude mouse model in vivo. Treatment with KS-133, a VIPR2-selective antagonist peptide, significantly inhibited VIP-induced cell proliferation in VIPR2-overexpressing MCF-7 and MDA-MB-231 cells. Overexpressed VIPR2 caused increases in the levels of cAMP and phosphorylated extracellular signal-regulated kinase (ERK), which involves a VIPR2 signaling pathway through Gs protein. Additionally, phosphorylation of vasodilator-stimulated phosphoprotein (Ser157) and cAMP response element binding protein (Ser133) in VIPR2-overexpressing MCF-7 cells was greater than that in control cells, suggesting the increased PKA activity. Moreover, an inhibitor of mitogen-activated protein kinase kinase, U0126, attenuated tumor proliferation in exogenous VIPR2-expressing MCF-7 and MDA-MB-231 cells at the same level as observed in EGFP-expressing cells treated with U0126. Together, these findings suggest that VIPR2 controls breast tumor growth by regulating the cAMP/PKA/ERK signaling pathway, and the excessive expression of VIPR2 may lead to an exacerbation of breast carcinoma.


Assuntos
Neoplasias da Mama , MAP Quinases Reguladas por Sinal Extracelular , Receptores Tipo II de Peptídeo Intestinal Vasoativo , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Transdução de Sinais , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo
15.
Exp Neurol ; 362: 114339, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36717013

RESUMO

Large scale studies in populations of European and Han Chinese ancestry found a series of rare gain-of-function microduplications in VIPR2, encoding VPAC2, a receptor that binds vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide with high affinity, that were associated with an up to 13-fold increased risk for schizophrenia. To address how VPAC2 receptor overactivity might affect brain development, we used a well-characterized Nestin-Cre mouse strain and a knock-in approach to overexpress human VPAC2 in the central nervous system. Mice that overexpressed VPAC2 were found to exhibit a significant reduction in brain weight. Magnetic resonance imaging analysis confirmed a decrease in brain size, a specific reduction in the hippocampus grey matter volume and a paradoxical increase in whole-brain white matter volume. Sex-specific changes in behavior such as impaired prepulse inhibition and contextual fear memory were observed in VPAC2 overexpressing mice. The data indicate that the VPAC2 receptor may play a critical role in brain morphogenesis and suggest that overactive VPAC2 signaling during development plays a mechanistic role in some forms of schizophrenia.


Assuntos
Receptores Tipo II de Peptídeo Intestinal Vasoativo , Substância Branca , Masculino , Humanos , Feminino , Camundongos , Animais , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Substância Branca/metabolismo , Peptídeo Intestinal Vasoativo/química , Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Inibição Pré-Pulso
16.
Nihon Yakurigaku Zasshi ; 158(1): 35-38, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-36596487

RESUMO

Depression is a common mental disorder and mainly characterized by persistent sadness and a lack of interest or pleasure in previously rewarding or enjoyable activities. Despair is also a common symptom of depression, and the forced swim and tail suspension tests are widely used to measure this behavior in rodents, but the results from these tests can include the effects on stress resistance in addition to depressive-like states. Reduced motivation is an important marker of psychiatric disorders, including depression, and thus we have previously developed the female encounter test, a novel and simple procedure for assessing reward-seeking behavior in adult male mice. Importantly, female mice should be considered in the development of animal models of depression and assessment of mouse behaviors since the lifetime prevalence of a major depressive disorder in women is almost twice that in men, and around one in seven women can develop postpartum depression. In this review, we summarized our recent research on the male encounter test for assessing motivation in adult female mice and introduced new topics on animal models and therapeutic drugs for postpartum depression.


Assuntos
Depressão Pós-Parto , Transtorno Depressivo Maior , Humanos , Camundongos , Feminino , Masculino , Animais , Natação/psicologia , Roedores , Depressão , Comportamento Animal , Modelos Animais de Doenças
17.
Genes Cells ; 28(1): 53-67, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36415926

RESUMO

Steroid hormones induce the transcription of target genes by activating nuclear receptors. Early transcriptional response to various stimuli, including hormones, involves the active catalysis of topoisomerase II (TOP2) at transcription regulatory sequences. TOP2 untangles DNAs by transiently generating double-strand breaks (DSBs), where TOP2 covalently binds to DSB ends. When TOP2 fails to rejoin, called "abortive" catalysis, the resulting DSBs are repaired by tyrosyl-DNA phosphodiesterase 2 (TDP2) and non-homologous end-joining (NHEJ). A steroid, cortisol, is the most important glucocorticoid, and dexamethasone (Dex), a synthetic glucocorticoid, is widely used for suppressing inflammation in clinics. We here revealed that clinically relevant concentrations of Dex and physiological concentrations of cortisol efficiently induce DSBs in G1 phase cells deficient in TDP2 and NHEJ. The DSB induction depends on glucocorticoid receptor (GR) and TOP2. Considering the specific role of TDP2 in removing TOP2 adducts from DSB ends, induced DSBs most likely represent stalled TOP2-DSB complexes. Inhibition of RNA polymerase II suppressed the DSBs formation only modestly in the G1 phase. We propose that cortisol and Dex frequently generate DSBs through the abortive catalysis of TOP2 at transcriptional regulatory sequences, including promoters or enhancers, where active TOP2 catalysis occurs during early transcriptional response.


Assuntos
Quebras de DNA de Cadeia Dupla , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glucocorticoides/farmacologia , Reparo do DNA , Proteínas Nucleares/metabolismo , Hidrocortisona/farmacologia , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , DNA/genética
18.
Neuropharmacology ; 223: 109313, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328065

RESUMO

While the molecular target of (R,S)-ketamine (ketamine) is thought to be the NMDA receptor, subanesthetic doses of ketamine have been known to modulate monoaminergic neurotransmission in the central nervous system. Although the involvement of the serotonergic system in the antidepressant effects of ketamine has been reported in most studies of this topic, some recent studies have reported that the dopaminergic system plays a key role in the effects of ketamine. Additionally, several lines of evidence suggest that the antidepressant-like effects of (R)-ketamine might be independent of the monoaminergic system. Ketamine metabolites also differ considerably in their ability to regulate monoamine neurotransmitters relative to (S)-ketamine and (R)-ketamine, while (2R,6R)-hydroxynorketamine might share common serotonergic signaling mechanisms with ketamine. In the current review, we summarize the effects of ketamine and its metabolites on monoamine neurotransmission in the brain and discuss the potential roles of the monoaminergic system in the mechanism of action of ketamine.


Assuntos
Ketamina , Antidepressivos/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica , Dopamina/metabolismo
19.
Biochem Biophys Res Commun ; 636(Pt 1): 10-16, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36332470

RESUMO

The vasoactive intestinal peptide receptor 2 (VIPR2) has attracted attention as a drug target for the treatment of mental disorders, cancer, and immune diseases. In 2021, we identified the peptide KS-133 as a VIPR2-selective antagonist. In this study, we aimed to elucidate the binding mechanism between VIPR2 and KS-133. To this end, VIPR2/KS-133 and VIPR2/vasoactive intestinal peptide (VIP) complex models were constructed through AlphaFold version 2.0 and molecular dynamic simulations. Our models revealed that: (i) both KS-133 and VIP have helical structures, (ii) the interaction residues on VIPR2 for both peptides are similar, and (iii) the orientation of their helices upon their binding to VIPR2 are different by ∼45°. Interestingly, in the process of constructing the aforementioned models, an S-S bond formation between Cys25 and Cys192 of the human VIPR2 was identified. Although these two Cys residues are highly conserved among species (i.e., corresponding to Cys24 and Cys191 in the mouse), no previous reports regarding this S-S bond formation exist. In order to clarify the potential role of this S-S bond in the VIPR2 has functional consequences, a cell line expressing the mouse VIPR2(Cys24Ala, Cys191Ala) was generated. During the VIP stimulation of this cell line, the phosphorylation of AKT (a downstream signal marker of VIPR2) was found to be significantly attenuated, thereby suggesting that the S-S bond has a functional significance for VIPR2. Our study not only elucidates the VIPR2-binding mechanism of KS-133 for the first time, but also provides new insights into the structural biology of VIPR2.


Assuntos
Receptores Tipo II de Peptídeo Intestinal Vasoativo , Receptores de Peptídeo Intestinal Vasoativo , Humanos , Camundongos , Animais , Receptores de Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Linhagem Celular
20.
Front Oncol ; 12: 852358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237322

RESUMO

Phosphoinositide metabolism is critically involved in human cancer cell migration and metastatic growth. The formation of lamellipodia at the leading edge of migrating cells is regulated by metabolism of the inositol phospholipid PI(4,5)P2 into PI(3,4,5)P3. The synthesized PI(3,4,5)P3 promotes the translocation of WASP family verprolin homologous protein 2 (WAVE2) to the plasma membrane and regulates guanine nucleotide exchange factor Rac-mediated actin filament remodeling. Here, we investigated if VIPR2, a receptor for vasoactive intestinal peptide (VIP), has a potential role in regulating cell migration via this pathway. We found that silencing of VIPR2 in MDA-MB-231 and MCF-7 human breast cancer cells inhibited VIP-induced cell migration. In contrast, stable expression of exogenous VIPR2 promoted VIP-induced tumor cell migration, an effect that was inhibited by the addition of a PI3-kinase (PI3K)γ inhibitor or a VIPR2-selective antagonist. VIPR2 stably-expressing cells exhibited increased PI3K activity. Membrane localization of PI(3,4,5)P3 was significantly attenuated by VIPR2-silencing. VIPR2-silencing in MDA-MB-231 cells suppressed lamellipodium extension; in VIPR2-overexpressing cells, VIPR2 accumulated in the cell membrane on lamellipodia and co-localized with WAVE2. Conversely, VIPR2-silencing reduced WAVE2 level on the cell membrane and inhibited the interaction between WAVE2, actin-related protein 3, and actin. These findings suggest that VIP-VIPR2 signaling controls cancer migration by regulating WAVE2-mediated actin nucleation and elongation for lamellipodium formation through the synthesis of PI(3,4,5)P3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...